Generalized Fourier Transform for Schrödinger Operators with Potentials of Order Zero
نویسندگان
چکیده
منابع مشابه
Schrödinger Operators with Singular Potentials †
We describe classical and recent results on the spectral theory of Schrödinger and Pauli operators with singular electric and magnetic potentials
متن کاملSchrödinger operators with oscillating potentials ∗
Schrödinger operators H with oscillating potentials such as cos x are considered. Such potentials are not relatively compact with respect to the free Hamiltonian. But we show that they do not change the essential spectrum. Moreover we derive upper bounds for negative eigenvalue sums of H.
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM
In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.
متن کاملGeneralized Haar – Fourier Transform
We give a new generalization for Haar functions. The generalization starts from the Walsh-like functions and based on the connection between the original Walsh and Haar systems. We generalize the Haar– Fourier Transform too.
متن کاملSome Estimates of Schrödinger-Type Operators with Certain Nonnegative Potentials
where the potential V belongs to Bq1 for q1 ≥ n/2. We are interested in the L boundedness of the operator∇4H−1, where the potential V satisfies weaker condition than that in 5, Theorem 1, 2 . The estimates of some other operators related to Schrödinger-type operators can be found in 2, 5 . Note that a nonnegative locally L integrable function V on R is said to belong to Bq 1 < q < ∞ if there ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1999
ISSN: 0022-1236
DOI: 10.1006/jfan.1999.3432