Generalized Fourier Transform for Schrödinger Operators with Potentials of Order Zero

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schrödinger Operators with Singular Potentials †

We describe classical and recent results on the spectral theory of Schrödinger and Pauli operators with singular electric and magnetic potentials

متن کامل

Schrödinger operators with oscillating potentials ∗

Schrödinger operators H with oscillating potentials such as cos x are considered. Such potentials are not relatively compact with respect to the free Hamiltonian. But we show that they do not change the essential spectrum. Moreover we derive upper bounds for negative eigenvalue sums of H.

متن کامل

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM

In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.

متن کامل

Generalized Haar – Fourier Transform

We give a new generalization for Haar functions. The generalization starts from the Walsh-like functions and based on the connection between the original Walsh and Haar systems. We generalize the Haar– Fourier Transform too.

متن کامل

Some Estimates of Schrödinger-Type Operators with Certain Nonnegative Potentials

where the potential V belongs to Bq1 for q1 ≥ n/2. We are interested in the L boundedness of the operator∇4H−1, where the potential V satisfies weaker condition than that in 5, Theorem 1, 2 . The estimates of some other operators related to Schrödinger-type operators can be found in 2, 5 . Note that a nonnegative locally L integrable function V on R is said to belong to Bq 1 < q < ∞ if there ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1999

ISSN: 0022-1236

DOI: 10.1006/jfan.1999.3432